

Marco Martini, MSc m.martini@fz-juelich.de

HERN Helmholtz Institute Erlangen-Nürnberg

Towards an Elevated Temperature and Pressure 3-Electrode Hydrodynamic Channel Flow Cell

M. Martini, M. Bonanno, K.J.J. Mayrhofer. Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Germany

Motivation & Overall Goal

- Fundamental electrocatalyst characterization at Elevated T&P
- Desired conditions: $P \ge 10 \ bar \rightarrow$ increased gas solubility (reactant or product); $T = 150 \circ C \rightarrow$ kinetic & selectivity effects
- Flexible electrolyte composition and real-time pH tuning

The Elevated T&P Channel Flow Cell (E-TP CFC) CNC-machined polyether-ether ketone (PEEK) Chemically & mechanically stable Internal (pseudo)reference electrode Interchangeable electrode discs

The Physical Electrochemistry of Channel Flow Cells

Hydrodynamic systems (alternative to rotating disc electrodes)^[1] \blacktriangleright The flowrate \dot{V} directly controls the mass transport and current I_{LIM} Submillimetric channel height $h_{ch} \rightarrow$ possible ohmic effects^[4] In Jaminar regimes. $k_{cell} = 1.467$

$$|I_{LIM}|^{[2]} = n_e - \cdot F \cdot k_{cell} \cdot C_{bulk} \left(\frac{A_{WE}^{geo} \cdot D}{h_{ch}}\right)^{2/3} \cdot \sqrt[3]{\dot{V}}$$

Finite-Element Simulations

 $D^{[3]} = 3.47 \cdot 10^{-6} \ cm^2 s^{-1}$

 $h_{ch} = 0.055 \ cm$

 $A_{WE}^{geo} = 0.196 \ cm^2$

Dummy Flow Cell Benchmarking at Room Temperature

 H_{UPD} on $Pt_{(poly)}$ Disc in H_2SO_4 0.5 M, v = 50 mV/s Hydrogen Underpotential Deposition <mark>ح</mark> 150 Correct potential sensing, little resistance \triangleright Potential values are independent on \dot{V} ► Traces of $O_{2(liq)}$ → negative current shift -300 -3.38 mL/min 1.2 1.4 **Limiting Current Analysis** 0.2 0.6 WE Potential vs. RHE, E [V] Fe^{III}(CN)₆]^{3−}+1e[−] → [Fe^{II}(CN)₆]^{4−}; $K_3Fe(CN)_6$ 10 mM + KNO₃ 0.2 M ▶ 0.05 → 1.6 V, v = 250 mV/s CVsPt & GC discs both work as WE (CE = GC) $|I_{LIM}|_{Calc} = 7.54 \cdot 10^{-4} \cdot \sqrt[3]{\dot{V}} \rightarrow \Delta_{Exp/Calc} = +12.9\%$ Literature \triangleright No disturbances, laminar flow (0.04 < Re < 114) **Data** [2] 10 mM [Fe^{III}(CN)₆]³⁻ Cathodic Scans vs. Flowrate 1.5 2.0 2.5 3.0 3.5 $U^{1/3} / (\mu L s^{-1})^{1/3}$ -0.01 mL/min 0.3 -0.10 mL/min $|\mathbf{I}_{\text{LIM}}|$ vs. (flowrate)^{1/3} —0.50 mL/min 0.15 7.5E-04 —1 mL/min y = 8.660E-04x-2 mL/min $6.0E-04 = R^2 = 9.989E-01$ —4 mL/min -6 mL/min -0.15 4.5E-04 -8 mL/min —10 mL/min **3.0E-04** —12 mL/min

Primary Current Distribution Over Circular Electrodes

Inhomogeneous current densities

References

[1] Fuhrmann, J., Zhao, H., Holzbecher, E., Langmach, H., Chojak, M., Halseid, R., Jusys, Z., Behm, J. *Phys. Chem. Chem. Phys.* (**2008**), 10, 3784-3795 [2] Jusys, Z., Kaiser, J., Behm, R.J. *Electrochimica Acta 49* (2004) 1297–1305 [3] $D_{[Fe(CN)_{\epsilon}]^{3-/4-}}$ from Diakowski, P.M., Kraatz, H-B. Chem. Commun., (2011), 47, 1431–1433, SI.

[4] Coles, B.A., Compton, R.G., Larsen, J.P., Spackman, R.A. Electroanalysis (1996), 8, No. 10

Conclusions & Future Perspectives

The DCFC demonstrated the effectiveness of the geometry and design Completing the commissioning and optimization of the E-TP CFC plant • Multiphysics modelling of P, T & V effects and comparison with experiments Benchmark tests at the E-TP conditions, then "real" catalyst studies

part of

in cooperation with

This work was financially supported by the Federal Ministry of Education and Research in Germany within the project HOPLYT (grant number number: 03SF0666A)

Cauerstraße 1 ||| 91058 Erlangen ||| Germany Tel. +39 342 000 9014 ||| www.hi-ern.de ||| m.martini@fz-juelich.de