High Throughput Materials and Devices for PV
Our group performs research in
Automated combinatorial mixing of solutions
Copyright: Kurt Fuchs/ZAE Bayern
- Combinatorial materials research
- High throughput synthesis, formulation, film deposition and characterization
- Characterization and Processing equipment development
- Big data methods and Machine Learning
Photovoltaics, LEDs, batteries, thermoelectric generators – more effective, stable and low-cost materials are needed for new innovative applications. Our group offers an open research platform to drastically shorten the development cycles for these new and complex materials. To do this fully automated high throughput techniques are applied, utilizing large sample numbers in combination with machine learning approaches, in order to investigate large parameter spaces with intelligent design of experiments.
Contact Details
Team member | Phone | Office | Address | |
---|---|---|---|---|
Dr. Jens Hauch | +49 9131 9898333 | j.hauch@fz-juelich.de | 1.12 | Forschungszentrum Jülich GmbH Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Immerwahrstr. 2 91058 Erlangen Germany |
Vanessa Arango | +49 9131 9398186 | v.arango@fz-juelich.de | 2.6 | |
Nidia Gawehns | +49 9131 9398154 | n.gawehns@fz-juelich.de | 0.9 | |
Erika Geffel | +49 9131 9398182 | e.geffel@fz-juelich.de | 2.8 | |
Dr. Thomas Heumüller | +49 9131 9398226 | t.heumueller@fz-juelich.de | 2.3 | |
Tobias Osterrieder | +49 9131 9398164 | t.osterrieder@fz-juelich.de | 2.6 | |
Andreas Rittler | +49 9131 9398164 | a.rittler@fz-juelich.de | 2.6 | |
Dr. Oleksandra Raievska | +49 9131 9398195 | o.raievska@fz-juelich.de | 2.8 | |
Dr. Mikhailo Sytnik | +49 9131 9398193 | m.sytnik@fz-juelich.de | 2.7 | |
Jerrit Wagner | +49 9131 9398164 | j.wagner@fz-juelich.de | 2.6 | |
Dr.Yicheng Zhao | +49 9131 9398193 | y.zhao@fz-juelich.de | 2.7 | |
Our Vision
Scara-robot and robotic arm handling OPV-substrates
Copyright: Kurt Fuchs/ZAE Bayern
is to revolutionize materials research and design. By linking state of the art materials modeling with high-throughput synthesis and formulation significantly more complex material combinations can be investigated than by traditional methods. By coupling these capabilities directly with application and characterization a simultaneous optimization of multiple performance parameters on the device level becomes possible. Through the addition of machine learning, big-data methods and state of the art optimization tools, the development of custom designed functional materials for the energy sector will be accelerated by 1-2 orders of magnitude!
Our Infrastructure
is customized for the fast and precise formulation and characterization of solutions, exploring large parameter spaces for solution formulation, manufacturing and characterizing electro-optical devices, energy materials and functional films.
For this purpose we have
- Fully equipped chemical lab with clean room capabilities for semiconductor grade materials storage and handling
- Automated high throughput synthesis equipment with microwave reactor, sample concentrator, liquid chromatography
- Semi-automated systems with pipetting robots and plate reader for pre-qualification of materials and inks
- State of the art printing and coating lab for film deposition with nm precision
- Fully automated research line for synthesis, ink formulation, film deposition, electrode evaporation, materials and substrate handling, characterization of up to 96 samples in parallel
- Non-destructive imaging lab with spectroscopic and hyperspectral imaging and scanning methods (Raman, FTIR, PL, EL, Thermography, AFM, SEM)
- Accelerated Lifetime testing with variable temperatures (up to 1000 °C, illumination (up to 500 suns) and atmospheres (con-trolled levels of humidity, O2, or other gases)
- Database and IT infrastructure for data handling and analysis
At the heart of our research facilities is our fully automated research machine AMANDA which integrates all functions from solution handling, film processing, device finishing and characterization in one integrated platform.
AMANDA - Autonomous Materials and Device Application Platform
Copyright: Kurt Fuchs/ZAE Bayern
Current Projects
Publications
This is an excerpt of our most relevant publications in recent years. For a full list of our departments publications please follow this search link to the JuSER literature database provided by Forschungszentrum Jülich.
- Y. Zhao, T. Heumueller, J. Zhang, J. Luo, C. Berger, S. Langner, B. Liu, J. Elia, A. Osvet, J. Wu, C. Liu, N. Li, J. Hauch, C. J. Brabec: A bilayer-conducting-polymer structure for planar perovskite solar cells with over 1400 hrs operational stability at elevated temperatures; Nature energy (2021); DOI: 10.1038/s41560-021-00953-z
- J. Zhang, S. Langner, J. Wu, C. Kupfer, L. Lüer, W. Meng, B. Zhao, C. Liu, A. Osvet, N. Li, M. Halik, T. Stubhan, Y. Zhao, J. A. Hauch, C. J. Brabec: Intercalating-Organic-Cation-Induced Stability Bowing in Quasi-2D Metal-Halide Perovskites; ACS energy letters (2022); DOI: 10.1021/acsenergylett.1c02081
- J. Wagner, C. G. Berger, X. Du, T. Stubhan, J. A. Hauch, C. J. Brabec: The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA; Journal of Materials Science (2021); DOI: 10.1007/s10853-021-06281-7
- Y. Zhao; J. Zhang; Z. Xu; S. Sun; S. Langner; N. T. P. Hartono; T. Heumueller; Y. Hou; J. Elia; N. Li; G. J. Matt; X. Du; W. Meng; A. Osvet; K. Zhang; T. Stubhan; Y. Feng; J. Hauch; E. H. Sargent; T. Buonassisi; C. J. Brabec: Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning; Nature Communications (2021); DOI: 10.1038/s41467-021-22472-x
- S. Sun; A. Tiihonen; F. Oviedo; Z. Liu; J. Thapa; Y. Zhao; N. T. P. Hartono; A. Goyal; T. Heumueller; C. Batali; A. Encinas; J. J. Yoo; R. Li; Z. Ren; I. M. Peters; C. J. Brabec; M. G. Bawendi; V. Stevanovic; J. Fisher; T. Buonassisi: A data fusion approach to optimize compositional stability of halide perovskites; Matter (2021); DOI: 10.1016/j.matt.2021.01.008
- X. Du; L. Lüer; T. Heumueller; J. Wagner; C. Berger; T. Osterrieder; J. Wortmann; S. Langner; U. Vongsaysy; M. Bertrand; N. Li; T. Stubhan; J. Hauch; C. J. Brabec: Elucidating the Full Potential of OPV Materials Utilizing a High-Throughput Robot-Based Platform and Machine Learning; Joule (2021); DOI: 10.1016/j.joule.2020.12.013
- Y. Zhao; P. Miao; J. Elia; H. Hu; X. Wang; T. Heumueller; Y. Hou; G. J. Matt; A. Osvet; Y.-T. Chen; M. Tarragó; D. de Ligny; T. Przybilla; P. Denninger; J. Will; J. Zhang; X. Tang; N. Li; C. He; A. Pan; A. J. Meixner; E. Spiecker; D. Zhang; C. J. Brabec: Strain-activated light-induced halide segregation in mixed-halide perovskite solids; Nature Communications (2020); DOI: 10.1038/s41467-020-20066-7
- X. Du; T. Heumueller; W. Gruber; O. Almora; A. Classen; J. Qu; F. He; T. Unruh; N. Li; C. J. Brabec: Unraveling the Microstructure-Related Device Stability for Polymer Solar Cells Based on Nonfullerene Small-Molecular Acceptors; Advanced materials (2020); DOI: 10.1002/adma.201908305
- S. Langner; F. Häse; J. D. Perea; T. Stubhan; J. Hauch; L. M. Roch; T. Heumueller; A. Aspuru-Guzik; C. Brabec: Beyond Ternary OPV: High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems; Advanced materials (2020); DOI: 10.1002/adma.201907801
- K. Weng; J. Xu; X. Du; S. Chandrabose; K. Chen; J. Zhou; G. Han; S. Tan; Z. Xie; Y. Yi; N. Li; F. Liu; J. M. Hodgkiss; C. J. Brabec; Y. Sun: Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells; Nature Communications (2020); DOI: 10.1038/s41467-020-19853-z
- E. Gu; X. Tang; S. Langner; P. Duchstein; Y. Zhao; I. Levchuk; V. Kalancha; T. Stubhan; J. Hauch; H. J. Egelhaaf; D. Zahn; A. Osvet; C. J. Brabec: Robot-Based High-Throughput Screening of Antisolvents for Lead Halide Perovskites; Joule (2020); DOI: 10.1016/j.joule.2020.06.013
- C. J. Brabec; A. Distler; X. Du; H.-J. Egelhaaf; J. Hauch; T. Heumueller; N. Li: Material Strategies to Accelerate OPV Technology Toward a GW Technology; Advanced energy materials (2020); DOI: 10.1002/aenm.202001864
- A. Classen; C. L. Chochos; L. Lüer; V. G. Gregoriou; J. Wortmann; A. Osvet; K. Forberich; I. McCulloch; T. Heumüller; C. J. Brabec: The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets; Nature energy (2020); DOI: 10.1038/s41560-020-00684-7
- Tabor D.P., Roch L.M., Saikin S.K., Kreisbeck C., Sheberla D., Montoya J.H., Dwaraknath S., Aykol M., Ortiz C., Tribukait H., Amador-Bedolla C., Brabec C., Maruyama B., Persson K.A., Aspuru-Guzik A.: Accelerating the discovery of materials for clean energy in the era of smart automation; Nature Reviews Materials (2018) DOI: 10.1038/s41578-018-0005-z
- Xie C., Tang X., Berlinghof M., Langner S., Chen S., Späth A., Li N., Fink R., Unruh T., Brabec C.: Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells; ACS Applied Materials & Interfaces (2018) DOI: 10.1021/acsami.8b03621
- Chen S., Hou Y., Chen H., Tang X., Langner S., Li N., Stubhan T., Levchuk I., Gu E., Osvet A., Brabec C.: Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach; Advanced Energy Materials (2017) DOI: 10.1002/aenm.201701543