1. Home
  2. Research
  3. High Throughput Methods in Photovoltaics
  4. High Throughput Processing

Our Vision

is to develop disruptive technologies to revolutionize the way solar technology is manufactured and utilized. We develop high throughput processing techniques that make it possible to screen many material combinations and process parameters in parallel.

Printing is the most effective means to cover large areas with functionality. This is a manufacturing paradigm shift with the potential to drive solar power generation to ultra-low costs.

Coating head printing solar cells

Our Infrastructure

Printing Materials

is custom designed for the printing and coating of solution processable semiconductors. It provides a maximum flexibility with regards to substrate, material and process for the printing of solar modules. This includes equipment for process development, material evaluation, module manu-facturing:

  • Fully equipped chemical lab with clean room capabilities and semiconductor grade materials storage and handling
  • State of the art printing (ink-jet, screen, flexo) and coating lab for film deposition with nm precision in z-direction on rigid and flexible substrates
  • Fully automated multi-head R2R printing and coating line for processing of func-tional electronic, opto-electronic and dielectric materials up to 40 cm web-width
  • Multiple galvo-head equipped batch and R2R capable laser systems (ns, fs) for patterning of single- and multi-layer stacks with nm precision in z direction and micrometer lateral resolution
  • Backend-Lab for contacting, encapsula-tion and packaging of solar modules
  • Accredited electrical characterization lab for test structures, solar cells and PV-modules
  • Non-destructive imaging lab with spec-troscopic and hyperspectral imaging and scanning methods (Raman, FTIR, PL, EL, Thermography, AFM, SEM)
  • Accelerated Lifetime testing with variable temperatures (up to 1000 C, illumination (up to 500 suns) and atmospheres (con-trolled levels of humidity, O2, or other gases)

Our Projects


EMERGE - Emerging Printed Electronics Research Infrastructure

Mehr: EMERGE - Emerging Printed Electronics Research Infrastructure …

VIPERLAB Overview with Border

Viperlab - Fully connected virtual and physical perovskite photovoltaics Lab

Mehr: Viperlab - Fully connected virtual and physical perovskite photovoltaics Lab …


This is an excerpt of our most relevant publications in recent years. For a full list of our departments publications please follow this search link to the JuSER literature database provided by Forschungszentrum Jülich.

  1. A. Distler; C. J. Brabec; H.-J. Egelhaaf: Organic photovoltaic modules with new world record efficiencies; Progress in photovoltaics (2021); DOI: 10.1002/pip.3336
  2. F. Akhundova, L. Lüer, A. Osvet, J. Hauch, I.M. Peters, K. Forberich, N. Li, C. Brabec: Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach; Applied Physics Letters (2021); DOI: 10.1063/5.0049010
  3. I. A. Channa, A. Distler, B. Scharfe, S. Feroze, K. Forberich, B. Lipovsek, C. J. Brabec, H.-J. Egelhaaf: Solution processed oxygen and moisture barrier based on glass flakes for encapsulation of Organic (Opto-) Electronic Devices; Flexible and Printed Electronics (2021); DOI: 10.1088/2058-8585/ac0716
  4. C. Liu; X. Du; S. Gao; A. Classen; A. Osvet; Y. He; K. Mayrhofer; N. Li; C. J. Brabec: A Cross-Linked Interconnecting Layer Enabling Reliable and Reproducible Solution-Processing of Organic Tandem Solar Cells; Advanced energy materials (2020); DOI: 10.1002/aenm.201903800
  5. F. Yang; L. Dong; D. Jang; K. C. Tam; K. Zhang; N. Li; F. Guo; C. Li; C. Arrive; M. Bertrand; C. J. Brabec; H.-J. Egelhaaf: Fully Solution Processed Pure a-Phase Formamidinium Lead Iodide Perovskite Solar Cells for Scalable Production in Ambient Condition; Advanced energy materials (2020); DOI: 10.1002/aenm.202001869
  6. F. Yang; N. Li; M. A. Kamarudin; J. Qu; J. Song; S. Hayase: Efficient Surface Passivation and Electron Transport Enable Low Temperature-Processed Inverted Perovskite Solar Cells with Efficiency over 20%; ACS sustainable chemistry & engineering (2020); DOI: 10.1021/acssuschemeng.0c03087
  7. M. V. Khenkin; E. A. Katz; A. Abate; G. Bardizza; J. J. Berry; C. Brabec; F. Brunetti; V. Bulovic; Q. Burlingame; A. Di Carlo; R. Cheacharoen; Y.-B. Cheng; A. Colsmann; S. Cros; K. Domanski; M. Dusza; C. J. Fell; S. R. Forrest; Y. Galagan; D. Di Girolamo; M. Grätzel; A. Hagfeldt; E. von Hauff; H. Hoppe; J. Kettle; H. Köbler; M. S. Leite; S. Liu; Y.-L. Loo; J. M. Luther; C.-Q. Ma; M. Madsen; M. Manceau; M. Matheron; M. McGehee; R. Meitzner; M. K. Nazeeruddin; A. F. Nogueira; Ç. Odabasi; A. Osherov; N.-G. Park; M. O. Reese; F. De Rossi; M. Saliba; U. S. Schubert; H. J. Snaith; S. D. Stranks; W. Tress; P. A. Troshin; V. Turkovic; S. Veenstra; I. Visoly-Fisher; A. Walsh; T. Watson; H. Xie; R. Yildirim; S. M. Zakeeruddin; K. Zhu; M. Lira-Cantu: Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures; Nature energy (2020); DOI: 10.1038/s41560-019-0529-5
  8. O. Almora; A. González-Lezcano; A. Guerrero; C. J. Brabec; G. Garcia-Belmonte: Ion-mediated hopping electrode polarization model for impedance spectra of CH 3 NH 3 PbI 3; Journal of applied physics (2020); DOI: 10.1063/5.0020554
  9. O. J. J. Ronsin; D. Jang; H.-J. Egelhaaf; C. J. Brabec; J. Harting: A phase-field model for the evaporation of thin film mixtures; Physical chemistry, chemical physics (2020); DOI: 10.1039/d0cp00214c
  10. Z. Xu; Y. Zhao; J. Zhang; K. Chen; C. J. Brabec; Y. Feng: Phase diagram and stability of mixed-cation lead iodide perovskites: A theory and experiment combined study; Physical review materials (2020); DOI: 10.1103/PhysRevMaterials.4.095401
  11. C. J. Brabec; A. Distler; X. Du; H.-J. Egelhaaf; J. Hauch; T. Heumueller; N. Li: Material Strategies to Accelerate OPV Technology Toward a GW Technology; Advanced energy materials (2020); DOI: 10.1002/aenm.202001864
  12. F. Guo; S. Qiu; J. Hu; H. Wang; B. Cai; J. Li; X. Yuan; X. Liu; K. Forberich; C. Brabec; Y. Mai: A Generalized Crystallization Protocol for Scalable Deposition of High-Quality Perovskite Thin Films for Photovoltaic Applications; Advanced science (2019); DOI: 10.1002/advs.201901067
  13. F. Guo; W. He; S. Qiu; C. Wang; X. Liu; K. Forberich; C. J. Brabec; Y. Mai: Sequential Deposition of High-Quality Photovoltaic Perovskite Layers via Scalable Printing Methods; Advanced functional materials (2019); DOI: 10.1002/adfm.201900964

Recent News

Dr. Hans-Joachim Egelhaaf
Team High Throughput Processing for Photovoltaics at HI-ERN starts operation!
09/2021 Dr. Hans-Joachim Egelhaaf joins us as the team leader for the Team High Throughput Processing for Photovoltaics
Mehr: Team High Throughput Processing for Photovoltaics at HI-ERN starts operation! …
HI ERN is part of the EU-project EMERGE
07/2021 - HI ERN is part of the EU-project Emerging Printed Electronics Research Infrastructure (EMERGE). In EMERGE 10 research institutions from 6 countries cooperate to support the value chain connected to flexible large-area printed electronics and photonics (FLAPEP), going from materials formulation to design and architecture of processes, devices and systems..
Mehr: HI ERN is part of the EU-project EMERGE …
ViperLab Logo
HI ERN is part of the EU-project VIPERLAB
06/2021 - HI ERN is part of the EU-project VIPERLAB. In VIPERLAB a „Fully connected virtual and physical perovskite photovoltaics Lab“ will be developed by integrating 15 research institutions.
Mehr: HI ERN is part of the EU-project VIPERLAB …