Chemical Hydrogen Storage
The “Chemical Hydrogen Storage” research department of HI ERN targets new chemical hydrogen storage technologies, related catalytic processes and material technologies.
Research
M.Sc. Holger Jorschick
Copyright: C.Heßelmann
Examples are the modification of electrocatalysts with ionic liquids or hydrogen storage using Liquid Organic Hydrogen Carrier (LOHC) systems. The LOHC technologies allow large amounts of hydrogen with high volumetric energy density for infrastructure-compatible storage and transport of hydrogen. The research unit is led by Prof. Dr. Peter Wasserscheid. The research at HI ERN naturally extents existing research activities of his FAU group, for example towards direct LOHC fuel cell and electrolysis technologies.
Scheme: Storage and transport of hydrogen by reversible catalytic hydrogenation/dehydrogenation of dibenzyl-toluene/perhydro-dibenzyltoluene
The Scheme shows reversible hydrogen binding/release using these pure hydrocarbon LOHC compounds. During hydrogenation, H0-DBT is loaded with up to 6.2 wt% hydroge corresponding to an energy content of 2.05 kWh kg-1. The energy-rich molecule H18-DBT is a high boiling liquid that can be stored in typical fuel tank for a long time without loss in energy. Molecular hydrogen can be released from H18-DBT by contact with a suitable catalyst at elevated temperature.
Full Cell Setup
Heated saturators for pressurized air and nitrogen or hydrogen.
Copyright: A.Kraus
M.Sc. Gabriel Sievi
Copyright: A. Kraus
For the investigation of fuel cells operated with organic fuels, a fuel cell setup is installed for testing various membrane electrode assemblies (MEAs). With this setup, it is possible to operate a single fuel cell with pressurized air (dry or humidified), hydrogen (dry or humidified) and different liquid, organic fuels. These fuels can be delivered liquid, gaseous or with a (humidified) carrier gas (nitrogen) to the cell. The quickConnect-setup also enables a fast switching between different MEAs, to vary between various membranes, catalyst loading or gas diffusion layers.
Kinetic modeling of the hydrogen release from Perhydro-Dibenzyltoluene
Estimation of model parameters by linear regression
Copyright: A. Bulgarin
M.Sc. Alexander Bulgarin
Copyright: A. Kraus
The overall optimization of the catalytic hydrogen release from the LOHC perhydro-dibenzyltoluene requires precise knowledge of the reaction system.
In order to describe the reaction progress mathematically, kinetic measurements are performed in a tubular reactor at lab-scale. For the estimation of kinetic parameters from experimental data, methods of linear and non-linear regression may be applied. The finally resulting parameterized model is a useful tool, e.g. in order to simulate dynamic operation of the dehydrogenation reactor or the effect of process parameters (e.g. temperature, pressure, residence time) on reactor performance.
Collaborations
- Dr. Peter Pfeiffer, Prof. Roland Dittmeyer (KIT, Germany)
- Prof. Regina Palkovits, Prof. Walter Leitner (RWTH Aachen)
Groups
Facilities
LOHC OneReactor system (5 KW hydrogenation / 5 kW dehydrogenation power)
The HI ERN research unit of Prof. Wasserscheid has jointly developed with the FAU spin-off company Hydrogenious Technologies GmbH the world’s first fully operational LOHC OneReactor energy storage system. The system has been built by Hydrogenious Technologies and has been delivered in 12/2016 to HI ERN. The system realizes hydrogen storage and release in the same reactor, thus improving significantly heat management and system dynamics of the entire energy storage process and reducing greatly specific investment cost.
In our current research using this OneReactor system at HI ERN we develop and test optimized catalyst systems for LOHC hydrogenation/dehydrogenation with a maximum of volumetric productivity and a minimum of LOHC degradation. Moreover, we identify and evaluate the most efficient operational strategies for the OneReactor in two different application scenarios: a) Off-grid energy storage, and b) energy storage in interplay with different heat storage technologies. Here, we investigate to which extent the heat from the exothermic hydrogen-loading process can be used for the endothermic hydrogen-release process in stationary applications if appropriate heat storage systems are applied.
Further equipment
- High-pressure high-temperature batch autoclave for LOHC hydrogenation / dehydrogenation experiments
- Laboratory plant for continuous dehydrogenation experiments e.g. catalyst screening and kinetic measurements
- Fuel cell setup for testing different organic substances as fuels
Analysis of gaseous substances:
- Gas chromatography for trace analysis of carbon monoxide, carbon dioxide, low boiling aromatic compounds and hydrocarbons in hydrogen
- On-line FTIR spectroscopy for hydrogen purity analysis
Analysis of liquid substances:
- Gas chromatography for stability studies of organic hydrogen carrier substances
- DART-MS
Recent Publications
Combined dynamic operation of PEM fuel cell and continuous dehydrogenation of perhydro-dibenzyltoluene
International journal of hydrogen energy 46(72), 35662 - 35677 (2021) [10.1016/j.ijhydene.2021.08.034]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
LOHC-bound hydrogen for catalytic NOx reduction from O2-rich exhaust gas
International journal of hydrogen energy 46(69), 34498 - 34508 (2021) [10.1016/j.ijhydene.2021.07.228]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Hydrogen solubility, interfacial tension, and density of the liquid organic hydrogen carrier system diphenylmethane/dicyclohexylmethane
International journal of hydrogen energy 46(37), 19446 - 19466 (2021) [10.1016/j.ijhydene.2021.03.093]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure
International journal of hydrogen energy 46(29), 15660 - 15670 (2021) [10.1016/j.ijhydene.2021.02.128]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Experimental determination of the hydrogenation/dehydrogenation - Equilibrium of the LOHC system H0/H18-dibenzyltoluene
International journal of hydrogen energy 46(64), 32583 - 32594 (2021) [10.1016/j.ijhydene.2021.07.119]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Ga–Ni supported catalytically active liquid metal solutions (SCALMS) for selective ethylene oligomerization
Catalysis science & technology 11(23), 7535 - 7539 (2021) [10.1039/D1CY01146D]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Pressurized hydrogen from charged liquid organic hydrogen carrier systems by electrochemical hydrogen compression
International journal of hydrogen energy 46(29), 15624 - 15634 (2021) [10.1016/j.ijhydene.2021.02.021]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Hydrogenation of aromatic and heteroaromatic compounds – a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems
Sustainable energy & fuels 5(5), 1311 - 1346 (2021) [10.1039/D0SE01369B]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
Catalytically activated stainless steel plates for the dehydrogenation of perhydro dibenzyltoluene
International journal of hydrogen energy 46(70), 34797 - 34806 (2021) [10.1016/j.ijhydene.2021.08.040]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS
GaPt Supported Catalytically Active Liquid Metal Solution Catalysis for Propane Dehydrogenation–Support Influence and Coking Studies
ACS catalysis 11(21), 13423 - 13433 (2021) [10.1021/acscatal.1c01924]
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS